Neural correlates of sustained spatial attention in human early visual cortex.

نویسندگان

  • Michael A Silver
  • David Ress
  • David J Heeger
چکیده

Attention is thought to enhance perceptual performance at attended locations through top-down attention signals that modulate activity in visual cortex. Here, we show that activity in early visual cortex is sustained during maintenance of attention in the absence of visual stimulation. We used functional magnetic resonance imaging (fMRI) to measure activity in visual cortex while human subjects performed a visual detection task in which a variable-duration delay period preceded target presentation. Portions of cortical areas V1, V2, and V3 representing the attended part of the visual field exhibited sustained increases in activity throughout the delay period. Portions of these cortical areas representing peripheral, unattended parts of the visual field displayed sustained decreases in activity. The data were well fit by a model that assumed the sustained neural activity was constant in amplitude over a time period equal to that of the actual delay period for each trial. These results demonstrate that sustained attention responses are present in early visual cortex (including primary visual cortex), in the absence of a visual stimulus, and that these responses correlate with the allocation of visuospatial attention in both the spatial and temporal domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural mechanisms of visual selective attention.

Visual selective attention improves our perception and performance by modifying sensory inputs at an early stage of processing. Spatial attention produces the most consistent early modulations of visual processing, which can be observed when attention is voluntarily allocated to locations. These effects of spatial attention are similar when attention is cued in a trial-by-trial, or sustained, f...

متن کامل

Spatial attention improves the quality of population codes in human visual cortex.

Selective attention enables sensory input from behaviorally relevant stimuli to be processed in greater detail, so that these stimuli can more accurately influence thoughts, actions, and future goals. Attention has been shown to modulate the spiking activity of single feature-selective neurons that encode basic stimulus properties (color, orientation, etc.). However, the combined output from ma...

متن کامل

Neural correlates of the visual vertical meridian asymmetry.

Human visual performance is better below than above fixation along the vertical meridian-a phenomenon we refer to as vertical meridian asymmetry (VMA). Here, we used fMRI to investigate the neural correlates of the VMA. We presented stimuli of two possible sizes and spatial frequencies on the horizontal and vertical meridians and analyzed the fMRI data in subregions of early visual cortex (V1/V...

متن کامل

Top-down flow of visual spatial attention signals from parietal to occipital cortex.

Given the complexity of our visual environment, the ability to selectively attend to certain locations, while ignoring others, is crucial for reducing the amount of visual information to manageable levels and for optimizing behavioral performance. Sustained allocation of spatial attention causes persistent increases in functional magnetic resonance imaging (fMRI) signals in portions of early vi...

متن کامل

Neural correlates of object-based attentional selection in human cortex.

Humans can attend to different objects independent of their spatial locations. While selecting an object has been shown to modulate object processing in high-level visual areas in occipitotemporal cortex, where/how behavioral importance (i.e., priority) for objects is represented is unknown. Here we examined the patterns of distributed neural activity during an object-based selection task. We m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 97 1  شماره 

صفحات  -

تاریخ انتشار 2007